p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.546C24, C24.593C23, C22.2382- 1+4, C22.3212+ 1+4, (C22×C4).61Q8, C23.101(C2×Q8), C2.9(C23⋊2Q8), C23.246(C4○D4), (C22×C4).156C23, (C23×C4).142C22, C23.8Q8.42C2, C23.7Q8.60C2, C22.5(C42.C2), C22.135(C22×Q8), C23.83C23⋊65C2, C23.81C23⋊66C2, C2.45(C22.32C24), C2.C42.556C22, C2.45(C22.33C24), C2.22(C23.41C23), (C2×C4).132(C2×Q8), C2.19(C2×C42.C2), (C2×C4⋊C4).372C22, C22.418(C2×C4○D4), (C2×C22⋊C4).232C22, (C2×C2.C42).30C2, SmallGroup(128,1378)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.546C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=g2=c, gag-1=ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >
Subgroups: 420 in 218 conjugacy classes, 100 normal (12 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C23×C4, C2×C2.C42, C23.7Q8, C23.8Q8, C23.81C23, C23.83C23, C23.546C24
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C42.C2, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C2×C42.C2, C22.32C24, C22.33C24, C23⋊2Q8, C23.41C23, C23.546C24
(1 3)(2 4)(5 40)(6 37)(7 38)(8 39)(9 11)(10 12)(13 43)(14 44)(15 41)(16 42)(17 19)(18 20)(21 23)(22 24)(25 55)(26 56)(27 53)(28 54)(29 31)(30 32)(33 61)(34 62)(35 63)(36 64)(45 47)(46 48)(49 51)(50 52)(57 59)(58 60)
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 59 51 47)(2 32 52 20)(3 57 49 45)(4 30 50 18)(5 42 36 54)(6 15 33 27)(7 44 34 56)(8 13 35 25)(9 29 21 17)(10 58 22 46)(11 31 23 19)(12 60 24 48)(14 62 26 38)(16 64 28 40)(37 41 61 53)(39 43 63 55)
(1 55 51 43)(2 44 52 56)(3 53 49 41)(4 42 50 54)(5 32 36 20)(6 17 33 29)(7 30 34 18)(8 19 35 31)(9 25 21 13)(10 14 22 26)(11 27 23 15)(12 16 24 28)(37 47 61 59)(38 60 62 48)(39 45 63 57)(40 58 64 46)
G:=sub<Sym(64)| (1,3)(2,4)(5,40)(6,37)(7,38)(8,39)(9,11)(10,12)(13,43)(14,44)(15,41)(16,42)(17,19)(18,20)(21,23)(22,24)(25,55)(26,56)(27,53)(28,54)(29,31)(30,32)(33,61)(34,62)(35,63)(36,64)(45,47)(46,48)(49,51)(50,52)(57,59)(58,60), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,47)(2,32,52,20)(3,57,49,45)(4,30,50,18)(5,42,36,54)(6,15,33,27)(7,44,34,56)(8,13,35,25)(9,29,21,17)(10,58,22,46)(11,31,23,19)(12,60,24,48)(14,62,26,38)(16,64,28,40)(37,41,61,53)(39,43,63,55), (1,55,51,43)(2,44,52,56)(3,53,49,41)(4,42,50,54)(5,32,36,20)(6,17,33,29)(7,30,34,18)(8,19,35,31)(9,25,21,13)(10,14,22,26)(11,27,23,15)(12,16,24,28)(37,47,61,59)(38,60,62,48)(39,45,63,57)(40,58,64,46)>;
G:=Group( (1,3)(2,4)(5,40)(6,37)(7,38)(8,39)(9,11)(10,12)(13,43)(14,44)(15,41)(16,42)(17,19)(18,20)(21,23)(22,24)(25,55)(26,56)(27,53)(28,54)(29,31)(30,32)(33,61)(34,62)(35,63)(36,64)(45,47)(46,48)(49,51)(50,52)(57,59)(58,60), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,47)(2,32,52,20)(3,57,49,45)(4,30,50,18)(5,42,36,54)(6,15,33,27)(7,44,34,56)(8,13,35,25)(9,29,21,17)(10,58,22,46)(11,31,23,19)(12,60,24,48)(14,62,26,38)(16,64,28,40)(37,41,61,53)(39,43,63,55), (1,55,51,43)(2,44,52,56)(3,53,49,41)(4,42,50,54)(5,32,36,20)(6,17,33,29)(7,30,34,18)(8,19,35,31)(9,25,21,13)(10,14,22,26)(11,27,23,15)(12,16,24,28)(37,47,61,59)(38,60,62,48)(39,45,63,57)(40,58,64,46) );
G=PermutationGroup([[(1,3),(2,4),(5,40),(6,37),(7,38),(8,39),(9,11),(10,12),(13,43),(14,44),(15,41),(16,42),(17,19),(18,20),(21,23),(22,24),(25,55),(26,56),(27,53),(28,54),(29,31),(30,32),(33,61),(34,62),(35,63),(36,64),(45,47),(46,48),(49,51),(50,52),(57,59),(58,60)], [(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,59,51,47),(2,32,52,20),(3,57,49,45),(4,30,50,18),(5,42,36,54),(6,15,33,27),(7,44,34,56),(8,13,35,25),(9,29,21,17),(10,58,22,46),(11,31,23,19),(12,60,24,48),(14,62,26,38),(16,64,28,40),(37,41,61,53),(39,43,63,55)], [(1,55,51,43),(2,44,52,56),(3,53,49,41),(4,42,50,54),(5,32,36,20),(6,17,33,29),(7,30,34,18),(8,19,35,31),(9,25,21,13),(10,14,22,26),(11,27,23,15),(12,16,24,28),(37,47,61,59),(38,60,62,48),(39,45,63,57),(40,58,64,46)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4L | 4M | ··· | 4T |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | - | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | Q8 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C23.546C24 | C2×C2.C42 | C23.7Q8 | C23.8Q8 | C23.81C23 | C23.83C23 | C22×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 8 | 3 | 1 |
Matrix representation of C23.546C24 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,2,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0],[1,2,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[3,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
C23.546C24 in GAP, Magma, Sage, TeX
C_2^3._{546}C_2^4
% in TeX
G:=Group("C2^3.546C2^4");
// GroupNames label
G:=SmallGroup(128,1378);
// by ID
G=gap.SmallGroup(128,1378);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,232,758,723,184,185]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=g^2=c,g*a*g^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations